Портал учебных материалов.
Реферат, курсовая работы, диплом.


  • Архитктура, скульптура, строительство
  • Безопасность жизнедеятельности и охрана труда
  • Бухгалтерский учет и аудит
  • Военное дело
  • География и экономическая география
  • Геология, гидрология и геодезия
  • Государство и право
  • Журналистика, издательское дело и СМИ
  • Иностранные языки и языкознание
  • Интернет, коммуникации, связь, электроника
  • История
  • Концепции современного естествознания и биология
  • Космос, космонавтика, астрономия
  • Краеведение и этнография
  • Кулинария и продукты питания
  • Культура и искусство
  • Литература
  • Маркетинг, реклама и торговля
  • Математика, геометрия, алгебра
  • Медицина
  • Международные отношения и мировая экономика
  • Менеджмент и трудовые отношения
  • Музыка
  • Педагогика
  • Политология
  • Программирование, компьютеры и кибернетика
  • Проектирование и прогнозирование
  • Психология
  • Разное
  • Религия и мифология
  • Сельское, лесное хозяйство и землепользование
  • Социальная работа
  • Социология и обществознание
  • Спорт, туризм и физкультура
  • Таможенная система
  • Техника, производство, технологии
  • Транспорт
  • Физика и энергетика
  • Философия
  • Финансовые институты - банки, биржи, страхование
  • Финансы и налогообложение
  • Химия
  • Экология
  • Экономика
  • Экономико-математическое моделирование
  • Этика и эстетика
  • Главная » Логика. Учебник » 4.2. Кванторы

    4.2. Кванторы

    Существенное отличие логики предикатов от логики высказываний заключается также в том, что первая вводит количественную характеристику высказываний или, как говорят в логике, квантифицирует их. Уже в традиционной логике суждения классифицировались не только по качеству, но и по количеству, т.е. общие суждения отличались от частных и единичных. Но никакой теории о связи между ними не было. Современная логика рассматривает количественные характеристики высказываний в специальной теории квантификации, которая составляет неотъемлемую часть исчисления предикатов.
    Для квантификации (количественной характеристики) высказываний эта теория вводит два основных квантора: квантор общности, который мы будем обозначать символом (х), и квантор существования, обозначаемый символом (Ех). Они ставятся непосредственно перед высказываниями или формулами, к которым относятся. В том случае, когда кванторы имеют более широкую область действия, перед соответствующей формулой ставятся скобки.

    Квантор общности    показывает, что предикат, обозначенный определенным символом, принадлежит всем объектам данного класса либо универсума рассуждения.
    Так, суждение: "Все материальные тела обладают массой" можно перевести    на символический язык так:
    (х) М (х),
    где х – обозначает материальное тело:
    М – массу;

    (х) – квантор общности.

    Аналогично этому утверждение о существовании экстрасенсорных явлений можно выразить через квантор существования:
    (Ех) Э (х),
    где через х обозначены явления:
    Э – присущее таким явлениям свойство экстрасенсорности;
    (Ex) – квантор существования.
    С помощью квантора общности    можно выражать эмпирические и теоретические законы, обобщения о связи между явлениями, универсальные гипотезы и другие общие высказывания. Например, закон теплового расширения тел символически можно представить в виде формулы:
    (х) (Т(х) → P(х)),
    где (х) – квантор общности;
    Т(х) – температура тела;

    Р(х) – его расширение;
    –> знак импликации.

    Квантор существования относится только к определенной части    объектов из данного универсума рассуждений. Поэтому, например, он используется для символической записи статистических законов, которые утверждают, что свойство или отношение относится только для характеристики определенной части    изучаемых объектов.
    Введение кванторов дает возможность прежде всего превращать предикаты в определенные высказывания. Предикаты сами по себе не являются ни истинными, ни ложными.
    Они становятся таковыми, если вместо переменных либо подставляются конкретные высказывания, либо, если они связываются кванторами, квантифицируются. На этом основании вводится разделение переменных на связанные и свободные.
    Связанными называются переменные, подпадающие под действие знаков кванторов общности    или существования. Например, формулы (х) А (х) и (х) (Р (х) → Q(x)) содержат переменную х. В первой формуле квантор общности    стоит непосредственно перед предикатом А(х), вовторой – квантор распространяет свое действие на переменные, входящие в предыдущий и последующий члены импликации.
    Аналогично этому квантор существования может относиться как к отдельному предикату, так и к их комбинации, образованной с помощью логических операций отрицания, конъюнкции, дизъюнкции и др.
    Свободная переменная не подпадает под действие знаков кванторов, поэтому она характеризует предикат или пропозициональную функцию, а не высказывание.
    С помощью комбинации кванторов можно выразить на символическом языке логики достаточно сложные предложения естественного языка. При этом высказывания, где речь идет о существовании объектов, удовлетворяющих определенному условию, вводятся с помощью квантора существования. Например, утверждение о существовании радиоактивных элементов записывается с помощью формулы:
    (Ex) R(x),
    где R обозначает свойство радиоактивности.

    Утверждение, что существует опасность для курящего заболеть раком, можно выразить так: (Ех) (К(х) → P(x)), где К обозначает свойство "быть курящим", а Р – "заболеть раком". С известными оговорками то же самое можно было выразить» посредством квантора общности:
    (х) (К(х) → Р(х)). Но утверждение, что всякий курящий может заболеть раком, было бы некорректным, и поэтому его лучше всего записать с помощью квантора существования, а не общности.

    Квантор общности    используется для высказываний, в которых утверждается, что определенному предикату А удовлетворяет любой объект из области    его значений. В науке, как уже говорилось, квантор общности    используется для выражения утверждений универсального характера, которые словесно представляются с помощью таких фраз, как "для всякого", "каждый", "всякий", "любой" и т.п.
    Путем отрицания квантора общности    можно выразить общеотрицательные высказывания, которые в естественном языке вводятся словами "никакой", "ни один", "никто" и т.п.

    Разумеется, при переводе на символический язык утверждений естественного языка встречаются определенные трудности, но при этом достигается необходимая точность и однозначность выражения мысли.
    Нельзя, однако, думать, что формальный язык богаче естественного языка, на котором выражаются не просто смысл, но и разные его оттенки.
    Речь поэтому может идти только о более точном представлении выражений естественного языка как универсального средства выражения мыслей и обмена ими в процессе общения.
    Чаще всего кванторы общности    и существования встречаются вместе. Например, чтобы выразить символически утверждение: "Для каждого действительного числа х существует такое число у, что х будет меньше у", обозначим предикат "быть меньше" символом <, известным из математики, и тогда утверждение можно представить формулой: (х) (Еу) < (х, у). Или в более привычной форме: (х) (Еу) (х < у). Это утверждение является истинным высказыванием, поскольку для любого действительного числа х всегда существует другое действительное число, которое будет больше него. Но если мы переставим в нем кванторы, т.е. запишем его в форме: (Еу) (х) (х < у), тогда высказывание станет ложным, ибо в переводе на обычный язык оно означает, что существует число у, которое будет больше любого действительного числа, т.е. существует наибольшее действительное число.
    Из самого определения кванторов общности    и существования непосредственно следует, что между ними существует определенная связь, которую обычно выражают с помощью следующих законов.
    1. Законы перестановки кванторов:
    (х) (у) А ~ (у) (х) А;
    (Ех) (Еу) А ~ (Еу) (Ех) А;
    (Ех) (у) А ~ (у) (Ех) А;
    2. Законы отрицания кванторов:
    ¬ (х) А ~ (Ех) ¬ А;
    ¬ (Ех) А ~ (х) ¬ А;
    3. Законы взаимовыразимости    кванторов:
    (х) А ~ ¬ (Ех) ¬ А;
    (Ех) А ~ ¬ (х) ¬ А.
    Здесь всюду А обозначает любую формулу объектного (предметного) языка. Смысл отрицания кванторов очевиден: если неверно, что для любого х имеет место А, тогда существуют такие х, для которых А не имеет места. Отсюда также следует, что если: любому х присуще А, тогда не существует такого х, которому было бы присуще не-А, что символически представлено в первом законе взаимовыразимости.
    « Предыдущая страница Оглавление Следующая страница »

    Об авторах
    Введение
    1 ГЛАВА. Предмет и задачи логики
    1.1. Логика как наука
    1.2. Основные этапы развития логики
    1.3. Логика и другие науки
    1.4. Понятие о логической форме и правильности мышления
    1.5. Логика и язык
    Проверьте себя
    2 ГЛАВА. Понятие как форма мышления
    2.1. Понятие как результат обобщения
    2.2. Определение понятий. Их основные виды
    2.3. Деление понятий и классификация
    2.4. Понимание и аргументация
    3 ГЛАВА. Логика высказываний
    3.1. Высказывание и предложение
    3.2. Логическая структура высказываний
    3.3. Способы образования сложных высказываний
    3.4. Основные логические операции над высказываниями
    3.5. Логическое следование
    3.6. Доказуемость и выводимость
    3.7. Логический анализ рассуждений естественного языка
    3.8. О модальности суждений
    3.9. Непосредственные умозаключения традиционной логики
    4 ГЛАВА. Логика предикатов
    4.1. Свойства, отношения и предикаты
    4.2. Кванторы
    4.3. Исчисление предикатов
    4.4. Логическое следование
    4.5. Выводимость и доказуемость
    4.6. Категорический силлогизм и другие умозаключения дедуктивной логики
    4.7. Логический анализ рассуждений в естественном языке
    5 ГЛАВА. Правдоподобные рассуждения
    5.1. Статистическая и логическая вероятность
    5.2. Основные формы индуктивных рассуждений
    5.3. Методы индукции Бэкона– Милля
    5.4. Причинность, индукция и гипотеза в социально-гуманитарном познании
    5.5. Умозаключения по аналогии
    5.6. Статистические умозаключения
    6 ГЛАВА. Основные законы логики
    6.1. Закон тождества
    6.2. Закон противоречия
    6.3. Закон исключенного третьего
    6.4. Закон достаточного основания
    Часть вторая. Логические основы аргументации
    7 ГЛАВА. Доказательство и опровержение
    7.1. Общее понятие о доказательстве
    7.2. Структура доказательства
    7.3. Основные способы демонстрации тезиса
    7.4. Прямые и косвенные доказательства
    7.5. Опровержение
    7.6. Правила доказательства и опровержения
    7.7. Паралогизмы, софизмы и парадоксы
    8 ГЛАВА. Аргументация и диалог
    8.1. Диалог как форма поиска истины и способ аргументации
    8.2. Спор, дискуссия и полемика
    8.3. Ошибки и уловки, допускаемые в ходе аргументации
    9 ГЛАВА. Общая структура и методы аргументации
    9.1. Графические схемы структуры аргументации
    9.2. Основные стадии процесса аргументации
    9.3. Важнейшие методы аргументации
    10 ГЛАВА. Анализ и оценка данных аргументации
    10.1. Основные виды данных и требования, предъявляемые к ним
    10.2. О природе ценностей в аргументации
    10.3 Доверие как источник убеждения
    Заключение

     

    Похожие работы:

    Особенности применения технологии квантового обучения в преподавании математики

    8.08.2007/дипломная работа, ВКР

    Теоретические аспекты квантового обучения. Психолого-педагогические и философские основания квантового обучения. Основные идеи и методы, применяемые в квантовом обучении. Особенности применения квантового обучения при обучении математике.

    Методология социально-педагогической диагностики

    21.02.2009/книга

    Измерения во внефизической области. Наблюдения и эксперименты. Сравнение измеряемого свойства с единицей измерения. Числовое присваивание. Использование квантитативных методов, математических моделей, аксиоматизация и формализация. Принцип противоречия.


     

    Похожие учебники:

    Педагогика начальной школы

    MySQLi connect error: Connection refused