Портал учебных материалов.
Реферат, курсовая работы, диплом.


  • Архитктура, скульптура, строительство
  • Безопасность жизнедеятельности и охрана труда
  • Бухгалтерский учет и аудит
  • Военное дело
  • География и экономическая география
  • Геология, гидрология и геодезия
  • Государство и право
  • Журналистика, издательское дело и СМИ
  • Иностранные языки и языкознание
  • Интернет, коммуникации, связь, электроника
  • История
  • Концепции современного естествознания и биология
  • Космос, космонавтика, астрономия
  • Краеведение и этнография
  • Кулинария и продукты питания
  • Культура и искусство
  • Литература
  • Маркетинг, реклама и торговля
  • Математика, геометрия, алгебра
  • Медицина
  • Международные отношения и мировая экономика
  • Менеджмент и трудовые отношения
  • Музыка
  • Педагогика
  • Политология
  • Программирование, компьютеры и кибернетика
  • Проектирование и прогнозирование
  • Психология
  • Разное
  • Религия и мифология
  • Сельское, лесное хозяйство и землепользование
  • Социальная работа
  • Социология и обществознание
  • Спорт, туризм и физкультура
  • Таможенная система
  • Техника, производство, технологии
  • Транспорт
  • Физика и энергетика
  • Философия
  • Финансовые институты - банки, биржи, страхование
  • Финансы и налогообложение
  • Химия
  • Экология
  • Экономика
  • Экономико-математическое моделирование
  • Этика и эстетика
  • Главная » Рефераты » Математика, геометрия, алгебра » Матрицы графов

    Матрицы графов

    Предмет: Математика, геометрия, алгебра
    Вид работы: реферат, реферативный текст
    Язык: русский
    Дата добавления: 11.2012
    Размер файла: 81 Kb
    Количество просмотров: 854
    Количество скачиваний: 9
    Теоретико-множественная и геометрическая форма определения графов. Матрица смежностей вершин неориентированного и ориентированного графа. Элементы матрицы и их сумма. Свойства матрицы инцидентности и зависимость между ними. Подмножество столбцов.



    Прямая ссылка на данную страницу:
    Код ссылки для вставки в блоги и веб-страницы:
    Скачать работу
    ВНИМАНИЕ! ССЫЛКА на файл скоро появится !
    Посмотреть текст работы
    Похожие работы:

    Матрицы и определители

    5.08.2009/реферат, реферативный текст

    Понятие матрицы, ее ранга, минора, использование при действиях с векторами и изучении систем линейных уравнений. Квадратная и прямоугольная матрица. Элементарные преобразования матрицы. Умножение матрицы на число. Класс диагональных матриц, определители.

    Матрицы и определители

    27.05.2010/курс лекций

    Понятие и типы матриц. Определители (детерминанты) квадратной матрицы и их свойства. Алгебраические действия над матрицами. Теоремы Лапласа и аннулирования. Понятие и свойства обратной матрицы, алгоритм ее построения. Единственность обратной матрицы.

    Матрицы и определители

    12.06.2010/реферат, реферативный текст

    Понятие, типы и алгебра матриц. Определители квадратной матрицы и их свойства, теоремы Лапласа и аннулирования. Понятие обратной матрицы и ее единственность, алгоритм построения и свойства. Определение единичной матрицы только для квадратных матриц.

    Матрицы и определители

    1.08.2009/реферат, реферативный текст

    Понятие матрицы, прямоугольная матрица размера m x n - совокупность mn чисел, расположенных в виде прямоугольной таблицы, содержащей m строк и n столбцов. Численная характеристика квадратной матрицы - ее определитель. Действия над матрицами, ранг матрицы.

    Матрицы, действия с ними

    2.06.2010/контрольная работа

    Понятие матрицы, его источники и развитие в математической науке, основные элементы и их взаимодействие. Описание действий с матрицами: сложение, вычитание, умножение между собой и на число, транспортирование. Свойства транспортированных матриц.

    Матрицы, Метод Гаусса

    2.06.2008/лекция

    Понятие матрицы. Метод Гаусса. Виды матриц. Метод Крамера решения линейных систем. Действия над матрицами: сложение, умножение. Решение систем линейных уравнений методом Гаусса. Элементарные пребразования систем. Математические перобразования.

    Матрицы. Дифференциальные уравнения

    21.04.2009/курс лекций

    Векторы на плоскости и в пространстве. Обыкновенное дифференциальное уравнение. Необходимые формулы для решения задач о касательной. Метод наименьших квадратов. Необходимые определения и формулы для вычисления интегралов. Производные элементарных функций.

    Матрицы

    14.12.2010/лекция

    Общие определения, связанные с понятием матрицы. Действия над матрицами. Определители 2-го и 3-го порядков, порядка n, порядок их вычисления и характерные свойства. Обратные матрицы и их ранг. Понятие и этапы элементарного преобразования матрицы.

    Задачи линейной алгебры. Понятие матрицы. Виды матриц. Операции с матрицами. Решение задач на преобразование матриц

    6.04.2003/реферат, реферативный текст

    Основные операции над матрицами и их свойства. Произведение матриц или перемножение матриц. Блочные матрицы. Понятие определителя. Панель инструментов Матрицы. Транспонирование. Умножение. Определитель квадратной матрицы. Модуль вектора.

    Обратимые матрицы над кольцом целых чисел

    8.08.2007/дипломная работа, ВКР

    Обратимые матрицы над полем Zp. Формула для подсчета обратимых матриц порядка 2. Формула для подсчета обратимых матриц порядка 3. Общая формула подсчета обратимых матриц над полем Zp. Обратимые матрицы над Zn.






    Перед Вами представлен документ: Матрицы графов.

    Категории