Портал учебных материалов.
Реферат, курсовая работы, диплом.


  • Архитктура, скульптура, строительство
  • Безопасность жизнедеятельности и охрана труда
  • Бухгалтерский учет и аудит
  • Военное дело
  • География и экономическая география
  • Геология, гидрология и геодезия
  • Государство и право
  • Журналистика, издательское дело и СМИ
  • Иностранные языки и языкознание
  • Интернет, коммуникации, связь, электроника
  • История
  • Концепции современного естествознания и биология
  • Космос, космонавтика, астрономия
  • Краеведение и этнография
  • Кулинария и продукты питания
  • Культура и искусство
  • Литература
  • Маркетинг, реклама и торговля
  • Математика, геометрия, алгебра
  • Медицина
  • Международные отношения и мировая экономика
  • Менеджмент и трудовые отношения
  • Музыка
  • Педагогика
  • Политология
  • Программирование, компьютеры и кибернетика
  • Проектирование и прогнозирование
  • Психология
  • Разное
  • Религия и мифология
  • Сельское, лесное хозяйство и землепользование
  • Социальная работа
  • Социология и обществознание
  • Спорт, туризм и физкультура
  • Таможенная система
  • Техника, производство, технологии
  • Транспорт
  • Физика и энергетика
  • Философия
  • Финансовые институты - банки, биржи, страхование
  • Финансы и налогообложение
  • Химия
  • Экология
  • Экономика
  • Экономико-математическое моделирование
  • Этика и эстетика
  • Главная » Рефераты » Математика, геометрия, алгебра » Пространства Соболева

    Пространства Соболева

    Предмет: Математика, геометрия, алгебра
    Вид работы: курсовая работа
    Язык: русский
    Дата добавления: 10.2009
    Размер файла: 232 Kb
    Количество просмотров: 1342
    Количество скачиваний: 8
    Понятие и основные характеристики пространства Соболева, их главные свойства, сущность простейшей теоремы вложения. Порядок применения пространства Соболева для доказательства существования и единственности обобщённого решения уравнения Лапласа.



    Прямая ссылка на данную страницу:
    Код ссылки для вставки в блоги и веб-страницы:
    Скачать работу
    ВНИМАНИЕ! ССЫЛКА на файл скоро появится !
    Посмотреть текст работы
    Похожие работы:

    Векторы в пространстве

    23.06.2009/творческая работа

    Схема и разность векторов. Умножение вектора на число. Координаты точки и вектора. Компланарные векторы и прямоугольная система координат. Длина, скалярное произведение, его свойства и угол между векторами. Переместительный и сочетательный законы.

    Геометрии Галилея и Минковского как описания пространства-времени

    24.02.2010/дипломная работа, ВКР

    Этапы развития теории описания пространства, сущность принципа относительности, сформулированного Галилеем. Геометрия Минковского как описание пространства – времени, основные понятия ее описания. Разработка практических занятий по данным темам.

    Дифференциальная геометрия торсов в пространстве 1R4 с псевдоевклидовой касательной плоскостью

    17.05.2010/дипломная работа, ВКР

    Исследование геометрии поверхностей четырехмерного псевдоевклидова пространства индекса один (пространства Минковского). Определение пространства Минковского, его основные особенности, типы прямых и плоскостей. Развертывающиеся и линейчатые поверхности.

    Интересные примеры в метрических пространствах

    7.05.2003/задача

    В n-мерном евклидовом пространстве полная ограниченность совпадает с обычной ограниченностью, то есть с возможностью заключить данное множество в достаточно большой куб.

    Клеточные пространства

    15.06.2009/курсовая работа

    Клеточные разбиения классических пространств. Важность для геометрии и топологии клеточного разбиения многообразий Грассмана. Гомотопические свойства клеточных пространств. Теорема о клеточной аппроксимации. Доказательство леммы о свободной точке.

    Линейно упорядоченное пространство ординальных чисел

    8.08.2007/дипломная работа, ВКР

    Порядковые определения. Топологические определения. Вполне упорядоченные множества и их свойства. Конечные цепи и их порядковые типы. Порядковый тип. Свойства ординальных чисел. Пространство ординальных чисел W(1) и его свойства.

    Метризуемость топологических пространств

    8.08.2007/дипломная работа, ВКР

    Основные понятия и теоремы. Свойства метризуемых пространств. Примеры метризуемых и неметризуемых пространств. Метризуемое пространство хаусдорфово. Метризуемое пространство нормально. Выполняется первая аксиома счетности.

    Нормированные пространства

    8.08.2007/дипломная работа, ВКР

    Понятие нормированного пространства. Пространства суммируемых функций. Интеграл Лебега-Стилтьеса. Интерполяция в пространствах суммируемых функций. Теорема Марцинкевича и ее применение. Пространства суммируемых последовательностей.

    Оператор сдвига в гильбертовом пространстве

    13.06.2007/дипломная работа, ВКР

    Основные понятия и факты теории линейных операторов. Определение и примеры линейных операторов. Ограниченность и норма линейного оператора. Сумма и произведение линейных операторов. Пространство линейных непрерывных операторов.

    Параллельный перенос в пространстве Лобачевского

    24.11.2009/курсовая работа

    Моделирование геометрией Лобачевского экспоненциальной неустойчивости на геодезических пространствах отрицательной кривизны. Формулировка аксиомы параллельности, противоположной евклидовой. Изменение кривизны в пространстве. Гауссова кривизна поверхности.






    Перед Вами представлен документ: Пространства Соболева.

    Категории